MIAMI-DADE BACK BAY COASTAL STORM RISK MANAGEMENT FEASIBILITY STUDY

THE FEASIBILITY STUDY PROCESS: KEY DECISION & PRODUCT MILESTONES

~3 months

Scoping

Alternatives Milestone January 2019

Decision Milestone

Product Milestone

US Army Corps of Engineers Norfolk District

PUBLIC REVIEW AND INPUT MIAMI-DADE BACK BAY COASTAL STORM RISK MANAGEMENT FEASIBILITY STUDY

National Environmental Policy Act Resource Areas Evaluated (NEPA) One of the nation's oldest environmental Aesthetics and Visual Land Use laws. Resources Navigation • Applies to federal agencies. • Air Quality Requires federal agencies to consider and Bathymetry, Hydrology, and Plankton disclose the environmental effects of their **Tidal Processes** proposed actions in a public document. Benthic Resources Encourages federal agencies to make Cultural Resources • Safety environmentally responsible decisions. • Essential Fish Habitat, Fish • The U.S. Army Corps of Engineers has Socioeconomics and Fishery Resources prepared an integrated Feasibility Report Transportation Floodplains and Programmatic Environmental Impact • Utilities Geology, Physiography, and Statement (EIS). • Water Quality Topography • Programmatic indicates this is a broad or • Hazardous, Toxic, and high-level NEPA document. Future site-**Radioactive Materials and** specific NEPA documents are anticipated. Habitat Wastes • The EIS will result in a Record of Decision document.

- Noise and Vibration
- Recreational Resources
- Special Status Species
- Wetlands and Mangroves
- Wildlife and Terrestrial

How can | provide comments?

Submit comments electronically to: MDBB-CSRMStudy@usace.army.mil Or http://arcg.is/fm0Xe

Or in writing to: **USACE** Norfolk District ATTN: Justine Woodward Planning and Policy Branch 803 Front Street Norfolk, VA 23510

For additional inquiries please contact Justine Woodward at: 757-201-7728 or MDBB-CSRMStudy@usace.army.mil

Public Comments are due by: July 20, 2020

PROBLEMS, OPPORTUNITIES, OBJECTIVES AND CONSIDERATIONS

PROBLEMS

- The geographic location, low elevation, and high population of Miami-Dade **County make it vulnerable to** storm surge from hurricanes and tropical storms.
- Increasing high tides and king tides resulting from sea level rise result in recurrent flooding to roads and properties.
- Increasing groundwater elevations from sea level rise result in flood risks to inland areas.
- Increasing flooding from rain events due to the higher groundwater elevations and higher tailwater elevations from sea level rise threaten properties and infrastructure and exacerbate coastal storm risk.

OPPORTUNITIES

- Reduce the risk to human life and health due to coastal flooding, high flooding events or infrastructure failure.
- Reduce coastal stormrelated economic damage and improve economic resiliency of the local economy and communities, particularly low-income communities and vulnerable populations.
- Increase resiliency, structural integrity, and reliability of critical infrastructure.
- Reduce transportation impacts due to high flooding events.
- Utilize available natural areas and open spaces for improving wave attenuation, water retention, and/or water storage.

- Increase the resiliency of **Miami-Dade County to** function effectively before, during, and after coastal storm events by decreasing the vulnerability of critical infrastructure to flooding damage from storm surge with consideration for sea level rise.
- Reduce economic damage to structures in communities vulnerable to severe flooding damage from storm surge with consideration for sea level rise.
- Incorporate natural and nature based features to reduce flood damage and complement the recommended nonstructural and structural measures.

OBJECTIVES

CONSTRAINTS AND CONSIDERATIONS

- Avoid creating or exacerbating flooding within the project area, to other local municipalities, and to local military installations.
- Avoid flooding solutions for the study area that would induce increased flooding issues in locations outside of the study area.
- Avoid and/or minimize impacts to existing environmental and cultural/historic resources in the study area and nearby (e.g. Biscayne Bay National Park, Miami Circle National Historic Landmark).
- Cannot exacerbate saltwater intrusion which will negatively impact fresh water for drinking and agriculture.

MANAGEMENT MEASURES FOR CONSIDERATION

Structural

Structural coastal storm risk management measures are engineering solutions to manage flood risk and reduce damage from coastal storms by physically limiting flood water inundation.

Examples

Floodwall with road closure, Norfolk, Virginia

Bayou Bienvenue Sector Gate, Louisiana

Nonstructural

on reducing the probability of flooding.

Removable flood barriers of an office, Bothell, Washington

Elevated home with drive under garage, New Orleans, Louisiana

Natural and Nature-Based Features

Mangroves from Salinas, Puerto Rico.